Learning in extended and approximate Rational Speech Acts models

Christopher Potts

Stanford Linguistics

EMNLP 2016

Gricean pragmatics

 The cooperative principle: Make your contribution as is required, when it is required, by the conversation in which you are engaged.

Gricean pragmatics

- The cooperative principle: Make your contribution as is required, when it is required, by the conversation in which you are engaged.
- Quality: Contribute only what you know to be true.
 Do not say false things. Do not say things for which you lack evidence.
- Quantity: Make your contribution as informative as is required. Do not say more than is required.
- Relation (Relevance): Make your contribution relevant.
- Manner: (i) Avoid obscurity; (ii) avoid ambiguity;
 (iii) be brief; (iv) be orderly.
- Politeness: Be polite, so be tactful, respectful, generous, praising, modest, deferential, and sympathetic. (Leech)

Gricean pragmatics

- The cooperative principle: Make your contribution as is required, when it is required, by the conversation in which you are engaged.
- Quality: Contribute only what you know to be true.
 Do not say false things. Do not say things for which you lack evidence.
- Quantity: Make your contribution as informative as is required. Do not say more than is required.
- Relation (Relevance): Make your contribution relevant.
- **Manner**: (i) Avoid obscurity; (ii) avoid ambiguity; (iii) be brief; (iv) be orderly.
- Politeness: Be polite, so be tactful, respectful, generous, praising, modest, deferential, and sympathetic. (Leech)

Overview

- 1. Meaning from a communicative tension
- 2. The Rational Speech Acts (RSA) model
- 3. Learning in the Rational Speech Acts Model
- 4. Neural RSA
- 5. Language and action

1. Meaning from a communicative tension

- 2. The Rational Speech Acts (RSA) model
- 3. Learning in the Rational Speech Acts Model
- 4. Neural RSA
- 5. Language and action

John Stuart Mill: I saw some of your children to-day invites the inference that I didn't see all of them

John Stuart Mill: I saw some of your children to-day invites the inference that I didn't see all of them "not because the words mean it, but because, if I had seen them all, it is most likely that I should have said so."

Generalization: Using a general term invites the inference that its more specific, salient alternatives are inappropriate.

Generalization: Using a general term invites the inference that its more specific, salient alternatives are inappropriate.

George Bush: "As I understand it, the current form asks the question 'Did somebody use drugs within the last seven years?', and I will be glad to answer that question, and the answer is 'No'."

Chris Potts: Watching TV in your underwear – that's a scalar implicature!

Chris Potts: Watching TV in your underwear – that's a scalar implicature!

van Tiel, van Miltenburg, Zevakhina, and Geurts, 'Scalar diversity'

van Tiel, van Miltenburg, Zevakhina, and Geurts, 'Scalar diversity'

Also: Judith Degen, 'Investigating the distribution of some (but not all) implicatures using corpora and web-based methods'

Partial-order implicature

Hirschberg 1985, A Theory of Scalar Implicature

Partial-order implicature

A: Do you speak German?

B: My husband does.

Hirschberg 1985, A Theory of Scalar Implicature

Partial-order implicature

- A: Do you speak German?
- B: My husband does.

- A: Are you on your honeymoon?
- B: Well, I was.

Hirschberg 1985, A Theory of Scalar Implicature

Highly particularized implicature

Reference games

Frank, Gómez, Peloquin, Goodman, and Potts 2016, 10 experiments, each $N \approx 600$ (4,651 participants). The summary picture:

https://github.com/langcog/pragmods

Reference games

Frank, Gómez, Peloquin, Goodman, and Potts 2016, 10 experiments, each $N \approx 600$ (4,651 participants). The summary picture:

https://github.com/langcog/pragmods

Reference games

Frank, Gómez, Peloquin, Goodman, and Potts 2016, 10 experiments, each $N \approx 600$ (4,651 participants). The summary picture:

https://github.com/langcog/pragmods

Levinson: "what is simply described is stereotypically exemplified".

1. At a busy marina in water-skiing country: "boat" interpreted as *motorboat*

Levinson: "what is simply described is stereotypically exemplified".

1. At a busy marina in water-skiing country: "boat" interpreted as *motorboat*

- At a busy marina in water-skiing country: "boat" interpreted as motorboat
- 2. "boat or canoe"

- 1. At a busy marina in water-skiing country: "boat" interpreted as motorboat
- 2. "boat or canoe"
- 3. Kim is in France. (in Paris)

- 1. At a busy marina in water-skiing country: "boat" interpreted as motorboat
- 2. "boat or canoe"
- 3. Kim is in France. (in Paris)
- 4. "The nuptials will take place in either France or Paris."

- 1. At a busy marina in water-skiing country: "boat" interpreted as *motorboat*
- 2. "boat or canoe"
- 3. Kim is in France. (in Paris)
- 4. "The nuptials will take place in either France or Paris."
- 5. I hit the button and it started. (causation)

- 1. At a busy marina in water-skiing country: "boat" interpreted as motorboat
- 2. "boat or canoe"
- 3. Kim is in France. (in Paris)
- "The nuptials will take place in either France or Paris."
- 5. I hit the button and it started. (causation)
- 6. Sandy finished the book. (reading)

Levinson: "What's said in an abnormal way isn't normal."

- 1. a. Turn on the car.
 - b. Get the car to turn on.
- 2. a. Stop the car.
 - b. Cause the car to stop.

Sociolinguistic variables

Sociolinguistic variables

Generalization

Where two forms are in salient contrast, the choice of one will lead to inferences about the other.

Sociolinguistic variables

Generalization

Where two forms are in salient contrast, the choice of one will lead to inferences about the other.

 Community: Community members adopt a speech style that is easily distinguished from the mainstream, enhancing solidarity.

Sociolinguistic variables

Generalization

Where two forms are in salient contrast, the choice of one will lead to inferences about the other.

- Community: Community members adopt a speech style that is easily distinguished from the mainstream, enhancing solidarity.
- Individual: An individual systematically varies their speech style by context to construct different personae.

- 1. Meaning from a communicative tension
- 2. The Rational Speech Acts (RSA) model
- 3. Learning in the Rational Speech Acts Model
- 4. Neural RSA
- 5. Language and action

 Rosenberg and Cohen 1964: early Bayesian model of production and comprehension

- Rosenberg and Cohen 1964: early Bayesian model of production and comprehension
- Lewis 1969: signaling systems

- Rosenberg and Cohen 1964: early Bayesian model of production and comprehension
- Lewis 1969: signaling systems
- Rabin 1990: recursive strategic signaling

- Rosenberg and Cohen 1964: early Bayesian model of production and comprehension
- Lewis 1969: signaling systems
- Rabin 1990: recursive strategic signaling
- Camerer and Ho 2004: cognitive hierarchy models for games of conflict and coordination

- Rosenberg and Cohen 1964: early Bayesian model of production and comprehension
- Lewis 1969: signaling systems
- Rabin 1990: recursive strategic signaling
- Camerer and Ho 2004: cognitive hierarchy models for games of conflict and coordination
- Michael Franke and Gerhard Jäger: iterated best response

- Rosenberg and Cohen 1964: early Bayesian model of production and comprehension
- Lewis 1969: signaling systems
- Rabin 1990: recursive strategic signaling
- Camerer and Ho 2004: cognitive hierarchy models for games of conflict and coordination
- Michael Franke and Gerhard Jäger: iterated best response
- Golland, Liang, and Klein 2010 (EMNLP): pragmatic listeners and probabilistic compositionality

- Rosenberg and Cohen 1964: early Bayesian model of production and comprehension
- Lewis 1969: signaling systems
- Rabin 1990: recursive strategic signaling
- Camerer and Ho 2004: cognitive hierarchy models for games of conflict and coordination
- Michael Franke and Gerhard Jäger: iterated best response
- Golland, Liang, and Klein 2010 (EMNLP): pragmatic listeners and probabilistic compositionality
- Frank and Goodman 2012 (Science): very sophisticated pragmatic agents and a new Bayesian foundation

Literal listener

 $I_0(w \mid msg, Lex) \propto Lex(msg, w)P(w)$

Pragmatic speaker

$$s_1(msg \mid w, Lex) \propto \exp \lambda \left(\log I_0(w \mid msg, Lex) - C(msg)\right)$$

Literal listener

 $I_0(w \mid msg, Lex) \propto Lex(msg, w)P(w)$

Pragmatic listener

$$I_1(w \mid msg, Lex) \propto s_1(msg \mid w, Lex)P(w)$$

Pragmatic speaker

$$s_1(msg \mid w, Lex) \propto \exp \lambda \left(\log l_0(w \mid msg, Lex) - C(msg) \right)$$

Literal listener

$$I_0(w \mid msg, Lex) \propto Lex(msg, w)P(w)$$

Pragmatic listener

 $l_1(w \mid msg, Lex) = pragmatic speaker \times state prior$

Pragmatic speaker

$$s_1(msg \mid w, Lex) =$$
literal listener – message costs

Literal listener

$$I_0(w \mid msg, Lex) =$$
lexicon × state prior

	beard	glasses	tie
Page	.67	.33	0
	0	1	0
	0	0	1

Literal speaker

 $s_0(msg \mid w, Lex) \propto \exp \lambda \left(\log Lex(msg, w) - C(msg) \right)$

Pragmatic listener

$$I_1(w \mid msg, Lex) \propto s_0(msg \mid w, Lex)P(w)$$

Literal speaker

$$s_0(msg \mid w, Lex) \propto \exp \lambda \left(\log Lex(msg, w) - C(msg) \right)$$

Pragmatic speaker

$$s_1(msg \mid w, Lex) \propto \exp \lambda (\log l_1(w \mid msg, Lex) - C(msg))$$

Pragmatic listener

$$I_1(w \mid msg, Lex) \propto s_0(msg \mid w, Lex)P(w)$$

Literal speaker

$$s_0(msg \mid w, Lex) \propto \exp \lambda \left(\log Lex(msg, w) - C(msg) \right)$$

Pragmatic speaker

 $s_1(msg \mid w, Lex) = pragmatic listener - message costs$

Pragmatic listener

$$I_1(w \mid msg, Lex) =$$
literal speaker \times state prior

Literal speaker

$$s_0(msg \mid w, Lex) =$$
lexicon – message costs

	beard	glasses	tie
0	1	1	0
	0	1	1
	0	0	1

	beard	glasses	tie
	.5	.5	0
	0	.5	.5
0	0	0	1

 S_1 I_1 S_0 Lex

	beard	glasses	tie
TO BE	.67	.33	0
00	0	.6	.4
	0	0	1

Joint reasoning

 $L(w, Context \mid msg) \propto P(w)P_{\mathbf{C}}(Context)s_1(msg \mid w, Context)$

Joint reasoning

$$L(w, Context \mid msg) \propto P(w)P_{\mathbf{C}}(Context)s_1(msg \mid w, Context)$$

$$L(w \mid msg) \propto P(w) \sum_{Context \in \mathbf{C}} P_{\mathbf{C}}(Context) s_1(msg \mid w, Context)$$

M-implicatures
 Bergen, Levy, Goodman, 'Pragmatic reasoning through semantic inference'

- M-implicatures
 Bergen, Levy, Goodman, 'Pragmatic reasoning through semantic inference'
- I-implicatures and implicature blocking
 Potts and Levy, 'Negotiating lexical uncertainty and speaker expertise with disjunction'

- M-implicatures
 Bergen, Levy, Goodman, 'Pragmatic reasoning through semantic inference'
- I-implicatures and implicature blocking
 Potts and Levy, 'Negotiating lexical uncertainty and speaker expertise with disjunction'
- Implicatures and compositionality
 Potts, Lassiter, Levy, Frank, 'Embedded implicatures as pragmatic inferences under compositional lexical uncertainty'

- M-implicatures
 Bergen, Levy, Goodman, 'Pragmatic reasoning through semantic inference'
- I-implicatures and implicature blocking
 Potts and Levy, 'Negotiating lexical uncertainty and speaker expertise with disjunction'
- Implicatures and compositionality
 Potts, Lassiter, Levy, Frank, 'Embedded implicatures as pragmatic inferences under compositional lexical uncertainty'
- Hyperbole
 Kao, Wu, Bergen, Goodman, 'Nonliteral understanding of number words'

- M-implicatures
 Bergen, Levy, Goodman, 'Pragmatic reasoning through semantic inference'
- I-implicatures and implicature blocking
 Potts and Levy, 'Negotiating lexical uncertainty and speaker expertise with disjunction'
- Implicatures and compositionality
 Potts, Lassiter, Levy, Frank, 'Embedded implicatures as pragmatic inferences under compositional lexical uncertainty'
- Hyperbole
 Kao, Wu, Bergen, Goodman, 'Nonliteral understanding of number words'
- Metaphor
 Kao, Bergen, Goodman, 'Formalizing the pragmatics of metaphor understanding'

Limitations

- Hand-specified lexicon
- High-bias model; few chances to learn from data
- Cognitive demands limit speaker rationality
- Speaker preferences
- Scalability

- 1. Meaning from a communicative tension
- 2. The Rational Speech Acts (RSA) model
- 3. Learning in the Rational Speech Acts Model
- 4. Neural RSA
- 5. Language and action

Will Monroe

TUNA furniture example

TUNA furniture example

Utterance: "blue fan small"

TUNA furniture example

Utterance: "blue fan small"

Utterance attributes: [colour:blue]; [size:small]; [type:fan]

TUNA people example

TUNA people example

Utterance: "The bald man with a beard"

TUNA people example

A Gricean ideal

age:old hairColour:light hasBeard:1 hasGlasses:0 hasHair:0 hasShirt:1 hasSuit:0 hasTie:0 type:person

age:young hairColour:dark hasBeard:0 hasGlasses:0 hasHair:1 hasShirt:1 hasSuit:0 hasTie:0 type:person

age:young hairColour:dark hasBeard:1 hasGlasses:0 hasHair:1 hasShirt:1 hasSuit:0 hasTie:1 type:person

age:young hairColour:dark hasBeard:1 hasGlasses:0 hasHair:1 hasShirt:0 hasSuit:1 hasTie:1 type:person

age:young hairColour:dark hasBeard:0 hasGlasses:0 hasHair:1 hasShirt:0 hasSuit:1 hasTie:1 type:person

age:young hairColour:dark hasBeard:1 hasGlasses:0 hasHair:1 hasShirt:1 hasSuit:0 hasTie:0 type:person

age:young hairColour:dark hasBeard:0 hasGlasses:0 hasHair:1 hasShirt:0 hasSuit:1 hasTie:1 type:person

Utterance: Utterance attributes: "The bald man with a beard"

[hasBeard:1]; [hasHair:0]; [type:person]

[colour:blue] , [size:small] [type:fan]

Cross-product features

```
colour:blue \( \) [colour:blue] colour:blue \( \) [size:small] colour:blue \( \) [type:fan] orientation:left \( \) [colour:blue] orientation:left \( \) [size:small]
```


[colour:blue] [size:small] [type:fan]

Cross-product features

```
colour:blue \land [colour:blue] colour:blue \land [size:small] colour:blue \land [type:fan] orientation:left \land [colour:blue] orientation:left \land [size:small]
```

Generation features

```
color
type + color
color + ¬size
attribute-count = 3
:
```


[colour:blue] [size:small] [type:fan]

Cross-product features

```
colour:blue \land [colour:blue] colour:blue \land [size:small] colour:blue \land [type:fan] orientation:left \land [colour:blue] orientation:left \land [size:small]
```

Generation features

```
color
type + color
color + ¬size
attribute-count = 3
:
```

type \gg orientation \gg color \gg size

Model definition

Optimization

Goal Features

Goal Features

Avoid hand-built lexicon

Features
Cross-product features

Goal	Features
Avoid hand-built lexicon Learn quirks of production	Cross-product features

Goal	Features
Avoid hand-built lexicon	Cross-product features
Learn quirks of production	Features like color

Goal	Features
Avoid hand-built lexicon Learn quirks of production Learn attribute hierarchies	Cross-product features Features like color

Goal	Features
Avoid hand-built lexicon Learn quirks of production Learn attribute hierarchies	Cross-product features Features like color Features like color + ¬ size

Goal	Features
Avoid hand-built lexicon Learn quirks of production Learn attribute hierarchies Learn message costs	Cross-product features Features like color Features like color + ¬ size

Goal	Features
Avoid hand-built lexicon	Cross-product features
Learn quirks of production	Features like color
Learn attribute hierarchies	Features like color + ¬ size
Learn message costs	Length features and others

Goal	Features
Avoid hand-built lexicon	Cross-product features
Learn quirks of production	Features like color
Learn attribute hierarchies	Features like color + ¬ size
Learn message costs	Length features and others

Cognitive and linguistic insights combined with learning

Example

[person] [glasses]

[person] [beard]

Test

[person] [glasses] [beard]

[person];[glasses] [person];[beard] [glasses];[beard] [all]

Error analysis

(Lower is better!)

Error analysis

(Lower is better!)

Error analysis

(Lower is better!)

Error analysis

(Lower is better!)

Limitations

- Hand-specified lexicon
- High-bias model; few chances to learn from data
- Cognitive demands limit speaker rationality
- Speaker preferences
- Scalability

Limitations

- Hand-specified lexicon
- High-bias model; few chances to learn from data
- Cognitive demands limit speaker rationality
- Speaker preferences
- Scalability

- 1. Meaning from a communicative tension
- 2. The Rational Speech Acts (RSA) model
- 3. Learning in the Rational Speech Acts Model
- 4. Neural RSA
- 5. Language and action

Robert Hawkins Will Monroe Noah Goodman

Color reference

Table: Examples from the xkcd color survey

Color papers at this conference, Friday: Monroe et al. (Session 8A) and Kawakami et al. (Session P8)

Context			Utterance	
			blue	
			The darker blue one	
			dull pink not the super bright one	
			Purple	
			blue	

Literal neural speaker S_0

Neural literal listener \mathcal{L}_0

Neural pragmatic speaker (Andreas & Klein, here!)

$$S_1(msg \mid c, C; \theta) = \frac{\mathcal{L}_0(c \mid msg, C; \theta)}{\sum_{msg' \in X} \mathcal{L}_0(c \mid msg', C; \theta)}$$

Neural pragmatic speaker (Andreas & Klein, here!)

$$S_1(msg \mid c, C; \theta) = \frac{\mathcal{L}_0(c \mid msg, C; \theta)}{\sum_{msg' \in X} \mathcal{L}_0(c \mid msg', C; \theta)}$$

where X is a sample from $S_0(msg \mid c, C; \theta)$ such that $msg^* \in X$.

Neural pragmatic speaker (Andreas & Klein, here!)

$$S_1(msg \mid c, C; \theta) = \frac{\mathcal{L}_0(c \mid msg, C; \theta)}{\sum_{msg' \in X} \mathcal{L}_0(c \mid msg', C; \theta)}$$

where X is a sample from $S_0(msg \mid c, C; \theta)$ such that $msg^* \in X$.

Neural pragmatic listener

$$\mathcal{L}_1(c \mid msg, C; \theta) \propto \mathcal{S}_1(msg \mid c, C; \theta)$$

Neural pragmatic speaker (Andreas & Klein, here!)

$$S_1(msg \mid c, C; \theta) = \frac{\mathcal{L}_0(c \mid msg, C; \theta)}{\sum_{msg' \in X} \mathcal{L}_0(c \mid msg', C; \theta)}$$

where X is a sample from $S_0(msg \mid c, C; \theta)$ such that $msg^* \in X$.

Neural pragmatic listener

$$\mathcal{L}_1(c \mid msg, C; \theta) \propto \mathcal{S}_1(msg \mid c, C; \theta)$$

Blended neural pragmatic listener

Weighted combination of \mathcal{L}_0 and \mathcal{L}_1 .

Language and action

- 1. Meaning from a communicative tension
- 2. The Rational Speech Acts (RSA) model
- 3. Learning in the Rational Speech Acts Model
- 4. Neural RSA
- 5. Language and action

Adam Vogel Dan Jurafsky

The Cards task

The Cards task

Gather six consecutive cards of the same suit (decide which suit together) or determine that this is impossible. Each of you can hold only three cards at a time, so you'll have to coordinate your efforts. You can talk all you want, but you can make only a limited number of moves.

The Cards task

Gather six consecutive cards of the same suit (decide which suit together) or determine that this is impossible. Each of you can hold only three cards at a time, so you'll have to coordinate your efforts. You can talk all you want, but you can make only a limited number of moves.

What's going on?

↓

Which suit should we pursue?

↓

Which sequence should we pursue?

↓

Where is card X?

Task-oriented dialogue corpora

Corpus	Task type	Domain	Task-orient.	Docs.	Format
Switchboard	discussion	open	very loose	2,400	aud/txt
SCARE	search	3d world	tight	15	aud/vid/txt
TRAINS	routes	map	tight	120	aud/txt
Map Task	routes	map	tight	128	aud/vid/txt
Columbia Games	games	maps	tight	12	aud/txt
Settlers	strategy	board	tight	40	txt
Cards	search	2d grid	tight	1,266	txt

Chief selling points for Cards:

- Pretty large
- Controlled enough that similar things happen often
- Very highly structured

Simplified cards scenario

Both agents must find the ace of spades.

- A POMDP agent that learns to navigate its world and interpret language.
- Driven by its small negative reward for not having the card and its large positive reward for finding it.
- No sensitivity to the other player.
- Literal listeners: each message msg denotes
 P(w | msg) estimated from the Cards corpus.
- Bayes rule to incorporate these as observations.

- A POMDP agent that learns to navigate its world and interpret language.
- Driven by its small negative reward for not having the card and its large positive reward for finding it.
- No sensitivity to the other player.
- Literal listeners: each message msg denotes
 P(w | msg) estimated from the Cards corpus.
- Bayes rule to incorporate these as observations.

 \Rightarrow board(left) \Rightarrow

"it's on the left side"

 \Rightarrow board(left) \Rightarrow

"it's on the left side"

DialogBot

A strict extension of Listener Bot:

- The set of states is now all combinations of
 - both players' positions
 - the card's region
 - the region the other player believes the card to be in
- The set of actions now includes dialogue actions.
- Same basic reward structure as for Listenerbot, except now also sensitive to whether the other player has found the card.
- Speech actions are modeled in terms of how they affect the agent's estimation of the belief state of the other agent.

DialogBot

A strict extension of Listener Bot:

- The set of states is now all combinations of
 - both players' positions
 - the card's region
 - the region the other player believes the card to be in
- The set of actions now includes dialogue actions.
- Same basic reward structure as for Listenerbot, except now also sensitive to whether the other player has found the card.
- Speech actions are modeled in terms of how they affect the agent's estimation of the belief state of the other agent.

Relationship to RSA

Pursuing the ideal of Gricean pragmatics

- The cooperative principle: Make your contribution as is required, when it is required, by the conversation in which you are engaged.
- Quality: Contribute only what you know to be true.
 Do not say false things. Do not say things for which you lack evidence.
- Quantity: Make your contribution as informative as is required. Do not say more than is required.
- Relation (Relevance): Make your contribution relevant.
- Manner: (i) Avoid obscurity; (ii) avoid ambiguity;
 (iii) be brief; (iv) be orderly.
- Politeness: Be polite, so be tactful, respectful, generous, praising, modest, deferential, and sympathetic. (Leech)

Pursuing the ideal of Gricean pragmatics

- The cooperative principle: Make your contribution as is required, when it is required, by the conversation in which you are engaged.
- Quality: Contribute only what you know to be true.
 Do not say false things. Do not say things for which you lack evidence.
- Quantity: Make your contribution as informative as is required. Do not say more than is required.
- Relation (Relevance): Make your contribution relevant.
- **Manner**: (i) Avoid obscurity; (ii) avoid ambiguity; (iii) be brief; (iv) be orderly.
- Politeness: Be polite, so be tactful, respectful, generous, praising, modest, deferential, and sympathetic. (Leech)

Emergent pragmatics

Emergent pragmatics

Quality

- · Very roughly, "Be truthful".
- For DialogBot, this emerges from the decision problem: false information is (typically) more costly.
- DialogBot would lie if he thought it would move them toward the objective.

Emergent pragmatics

Quality

- · Very roughly, "Be truthful".
- For DialogBot, this emerges from the decision problem: false information is (typically) more costly.
- DialogBot would lie if he thought it would move them toward the objective.

Quantity and Relevance

- · Favor informative, timely contributions.
- When DialogBot finds the card, it communicates its location, not because it is hard-coded to do so, but rather because it will help the other agent.

Grown-up DialogBots

Baby DialogBots

Experimental results

Agents	% Success	Average Moves
ListenerBot & ListenerBot	84.4%	19.8
ListenerBot & DialogBot	87.2%	17.5
DialogBot & DialogBot	90.6%	16.6

Table: The evaluation for each combination of agents. 500 random initial states per agent combination.

Figure: Human literal interpretations

Figure: Human pragmatic interpretations

Figure: DialogBot interpretations

Limitations

	States
Card location	231
	×
Agent location	231
	×
Partner location	231
	×
Partner's card beliefs	231
Total	≈3 billion

- Exact solutions are out of the question.
- State-of-the-art approximate POMDP solutions can solve problems with around 20K states.

1. The RSA insight L(S(L)) is a powerful tool for achieving pragmatic language understanding.

- 1. The RSA insight L(S(L)) is a powerful tool for achieving pragmatic language understanding.
- 2. RSA can be instantiated as a learned classifier.

- 1. The RSA insight L(S(L)) is a powerful tool for achieving pragmatic language understanding.
- 2. RSA can be instantiated as a learned classifier.
- 3. The intractability of these models traces to the inherent intractability of pragmatic reasoning.

- 1. The RSA insight L(S(L)) is a powerful tool for achieving pragmatic language understanding.
- 2. RSA can be instantiated as a learned classifier.
- 3. The intractability of these models traces to the inherent intractability of pragmatic reasoning.
- 4. Computational and cognitive considerations should lead us to effective approximations.

- 1. The RSA insight L(S(L)) is a powerful tool for achieving pragmatic language understanding.
- 2. RSA can be instantiated as a learned classifier.
- 3. The intractability of these models traces to the inherent intractability of pragmatic reasoning.
- 4. Computational and cognitive considerations should lead us to effective approximations.

Thanks!