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Gricean pragmatics
• The cooperative principle: Make your

contribution as is required, when it is required, by
the conversation in which you are engaged.

• Quality: Contribute only what you know to be true.
Do not say false things. Do not say things for which
you lack evidence.

• Quantity: Make your contribution as informative as
is required. Do not say more than is required.

• Relation (Relevance): Make your contribution
relevant.

• Manner: (i) Avoid obscurity; (ii) avoid ambiguity;
(iii) be brief; (iv) be orderly.

• Politeness: Be polite, so be tactful, respectful,
generous, praising, modest, deferential, and
sympathetic. (Leech)
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Overview

1. Meaning from a communicative tension
2. The Rational Speech Acts (RSA) model
3. Learning in the Rational Speech Acts Model
4. Neural RSA
5. Language and action
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Scalar implicature

John Stuart Mill: I saw some of
your children to-day invites the
inference that I didn’t see all of
them

“not because the words
mean it, but because, if I had
seen them all, it is most likely
that I should have said so.”

some(X,Y)

all(X,Y)
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Scalar implicature

Generalization: Using a general
term invites the inference that
its more specific, salient
alternatives are inappropriate.

general

specific
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Scalar implicature

George Bush: “As I understand
it, the current form asks the
question ‘Did somebody use
drugs within the last seven
years?’, and I will be glad to
answer that question, and the
answer is ‘No’.”

no drugs in 7 years

never drugs
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Scalar implicature

Chris Potts: Watching TV in your
underwear – that’s a scalar
implicature!
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Scalar diversity 11
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Figure 2: Percentages of positive responses in Experiment 1 (neutral content, dark grey)
and Experiment 2 (non-neutral content, orange).

van Tiel, van Miltenburg,
Zevakhina, and Geurts,
‘Scalar diversity’

Also: Judith Degen,
‘Investigating the distribution
of some (but not all)
implicatures using corpora
and web-based methods’

6 / 56



A Gricean ideal Implicatures RSA Learned RSA Neural RSA Language and action Prospects

Scalar diversity 11

0 20 40 60 80 100

cheap/free
sometimes/always

some/all
possible/certain

may/will
difficult/impossible

rare/extinct
may/have to

warm/hot
few/none

low/depleted
hard/unsolvable

allowed/obligatory
scarce/unavailable

try/succeed
palatable/delicious

memorable/unforgettable
like/love

good/perfect
good/excellent

cool/cold
hungry/starving

adequate/good
unsettling/horrific

dislike/loathe
believe/know

start/finish
participate/win

wary/scared
old/ancient

big/enormous
snug/tight

attractive/stunning
special/unique

pretty/beautiful
intelligent/brilliant

funny/hilarious
dark/black
small/tiny

ugly/hideous
silly/ridiculous

tired/exhausted
content/happy

Figure 2: Percentages of positive responses in Experiment 1 (neutral content, dark grey)
and Experiment 2 (non-neutral content, orange).

van Tiel, van Miltenburg,
Zevakhina, and Geurts,
‘Scalar diversity’

Also: Judith Degen,
‘Investigating the distribution
of some (but not all)
implicatures using corpora
and web-based methods’

6 / 56



A Gricean ideal Implicatures RSA Learned RSA Neural RSA Language and action Prospects

Scalar diversity

6 / 56



A Gricean ideal Implicatures RSA Learned RSA Neural RSA Language and action Prospects

Scalar diversity

6 / 56



A Gricean ideal Implicatures RSA Learned RSA Neural RSA Language and action Prospects

Partial-order implicature

A: Do you speak
German?

B: My husband does.

128

AFFIRt-.t(B,rhird chaprer, BEL(B, read(B,third chapter»» 1\

ALT_SENT(read(B,ch3prec_one), read(B,thirdj:hapter),
'parts of a dissertation'»
=) SCALAR_IMP(B, A, I read the third, ...,BEL(B, read(B,chapter_one»,
Ci)

There are no restrictions on those posers which support scalar implicamre. However, (ar
least) one restriction does exist on which posers may be viewed as salient in a given exchange:
Above (Section 5.1.6.3) I noted for most metrics that rank utterances. both a given metric
and irs dual (converse) may be candidares for salience in an exchange. However, no metric (ji
which orders values vi and Vj such that a) vi is higher than Vj and b} the truth of Vj entails the
truth of vi can supporr scalar implicature -- for the simple reason in such a case, a sentence
Pi ranked higher than a sentence Pj by (ji since then the implicature licensed would be
inconsistent with the utterance licensing it. In terms of the fonnaIism presented in Chapter 2,
such a meaning would not be reinforceable. Consider, for example. (212a):

(212) A: Are you planning to buy a dog?
a. B: A German Shepherd.
b. B: I'm buying a Gennan Shepherd and I'm not buying a dog.

While one might identify either an ordering defined by 'isa' (i.e.• a Gennan Shepherd isa dog)
or by 'subsumes' (i.e., a dog subsumes the subtype Shepherd) as salient in this
exchange, only the latter permits scalar implicature here. B cannot implicate that she is not
buying a dog vla this response, since buying a Gennan Shepherd entails buying a dog. The
attempted reinforcement of (212b) fails. However, we cannot rule out 'isa' relations as
potential supporters of scalar imphcarore: In 213, for example. 8's response might evoke either
an'isa'

(213) A: Would you like a dog?
8: I'd like a German Shepherd.

hierarchy - or irs dual. Apparently, any poser can support scaiar implicature, although other
tests for conversational implicature may rule out some particuJ3r posers in panicular exchanges.

5.3.2.3. Representing Scalar Implicature Orderings as Pos.ets

J have demonstrated above how part! whole re!arions can be represented. To demonstrate
that L'le other orderings discussed in Section 5.1 are accounted for by a poset condition. I w;i!
describe how representative orderings can be accommodated by this condition so mat
scalar implicatures are correctly predicted by ImPl_3'

Rdations defined by ordering the non-null members of the power of some set x by
set-inclusion allow a poset representation of x and its non-null proper subsets a5 follows: Any
non-null proper subset of a set m<lY be nnked as LOWER than the set which it. and

129

set, in consequence, will represent a HIGHER value in the ordering. Subs.ets which are neither
included in, nor include, one another, will be ALTERNATE values in this poser. Consider how
the salient ordering in the following exchange mighr be represented:

(214) A: Do you speak: Portuguese?
B: My husband does.

The inclusion ordering which supports the implicature in 214 might be represented as follows:

So, {husband,wife.chiid} wi!! be the highest value in this ordering, with the alternate doubletons
(husband,wife), (wife.child), and (husband,child) lower values and the alternate values,
{husband}, (wife), and {child} lower values still in this poset. By the scalar implicature
conventions, then, S may affinn. say, (husband.wife) to convey ...,BEL(S. (husband,wile.child))
as well as -,BEL(S. (husband,child}) and -,BEL(S, (wife.childJ). Note, particularly, that there
may be some redundance in scalar implicatures predicted from this representation. Also, any
subsets so represented may be lexica1ized in various ways -- as, the expression (husband.wife)
might be lexicalized as •couple' or as 'husband and wife'. The theory presented in this thesis
will not distinguish between these. 128

As noted in Sections 5.1.7, temporal orderings may also be represented as setS ofrernporal
for the analysis of licensed scalar implicacures. So, these orderings too wilt be defined by set
inclusion, as:

{past, resent} {presenr,future} {past,furure}r---:::--
{future}

Posers defined by a type! subrype metric, such as that which supports 174, may be
illustrated by me (parrial) classification hierarchy:

lZ1!Sut see {CorelIa 84, Ka!ita 84) for some approaches to thtS problem.

A: Are you on your
honeymoon?

B: Well, I was.

128
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ALT_SENT(read(B,ch3prec_one), read(B,thirdj:hapter),
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=) SCALAR_IMP(B, A, I read the third, ...,BEL(B, read(B,chapter_one»,
Ci)
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which orders values vi and Vj such that a) vi is higher than Vj and b} the truth of Vj entails the
truth of vi can supporr scalar implicature -- for the simple reason in such a case, a sentence
Pi ranked higher than a sentence Pj by (ji since then the implicature licensed would be
inconsistent with the utterance licensing it. In terms of the fonnaIism presented in Chapter 2,
such a meaning would not be reinforceable. Consider, for example. (212a):

(212) A: Are you planning to buy a dog?
a. B: A German Shepherd.
b. B: I'm buying a Gennan Shepherd and I'm not buying a dog.

While one might identify either an ordering defined by 'isa' (i.e.• a Gennan Shepherd isa dog)
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may be some redundance in scalar implicatures predicted from this representation. Also, any
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Hirschberg 1985, A Theory of Scalar Implicature
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set, in consequence, will represent a HIGHER value in the ordering. Subs.ets which are neither
included in, nor include, one another, will be ALTERNATE values in this poser. Consider how
the salient ordering in the following exchange mighr be represented:

(214) A: Do you speak: Portuguese?
B: My husband does.

The inclusion ordering which supports the implicature in 214 might be represented as follows:

So, {husband,wife.chiid} wi!! be the highest value in this ordering, with the alternate doubletons
(husband,wife), (wife.child), and (husband,child) lower values and the alternate values,
{husband}, (wife), and {child} lower values still in this poset. By the scalar implicature
conventions, then, S may affinn. say, (husband.wife) to convey ...,BEL(S. (husband,wile.child))
as well as -,BEL(S. (husband,child}) and -,BEL(S, (wife.childJ). Note, particularly, that there
may be some redundance in scalar implicatures predicted from this representation. Also, any
subsets so represented may be lexica1ized in various ways -- as, the expression (husband.wife)
might be lexicalized as •couple' or as 'husband and wife'. The theory presented in this thesis
will not distinguish between these. 128

As noted in Sections 5.1.7, temporal orderings may also be represented as setS ofrernporal
for the analysis of licensed scalar implicacures. So, these orderings too wilt be defined by set
inclusion, as:

{past, resent} {presenr,future} {past,furure}r---:::--
{future}

Posers defined by a type! subrype metric, such as that which supports 174, may be
illustrated by me (parrial) classification hierarchy:

lZ1!Sut see {CorelIa 84, Ka!ita 84) for some approaches to thtS problem.

A: Are you on your
honeymoon?

B: Well, I was.
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Ci)
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I-implicature

Levinson: “what is simply described is stereotypically
exemplified”.

1. At a busy marina in water-skiing country:
“boat” interpreted as motorboat

2. “boat or canoe”

3. Kim is in France. (in Paris)

4. “The nuptials will take place in either France or
Paris.”

5. I hit the button and it started. (causation)

6. Sandy finished the book. (reading)
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M-implicature

Levinson: “What’s said in an abnormal way isn’t
normal.”

1. a. Turn on the car.
b. Get the car to turn on.

2. a. Stop the car.
b. Cause the car to stop.
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Sociolinguistic variables

Generalization
Where two forms are in salient contrast, the choice of
one will lead to inferences about the other.

• Community: Community members adopt a speech
style that is easily distinguished from the
mainstream, enhancing solidarity.

• Individual: An individual systematically varies their
speech style by context to construct different
personae.
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2. The Rational Speech Acts (RSA) model
3. Learning in the Rational Speech Acts Model
4. Neural RSA
5. Language and action
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• Frank and Goodman 2012 (Science): very

sophisticated pragmatic agents and a new
Bayesian foundation
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Pragmatic listeners

Pragmatic listener

l1(w |msg,Lex) = pragmatic speaker× state prior

Pragmatic speaker

s1(msg | w,Lex) = literal listener−message costs

Literal listener

l0(w |msg,Lex) = lexicon× state prior
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• M-implicatures
Bergen, Levy, Goodman, ‘Pragmatic reasoning through
semantic inference’

• I-implicatures and implicature blocking
Potts and Levy, ‘Negotiating lexical uncertainty and speaker
expertise with disjunction’

• Implicatures and compositionality
Potts, Lassiter, Levy, Frank, ‘Embedded implicatures as
pragmatic inferences under compositional lexical uncertainty’

• Hyperbole
Kao, Wu, Bergen, Goodman, ‘Nonliteral understanding of
number words’

• Metaphor
Kao, Bergen, Goodman, ‘Formalizing the pragmatics of
metaphor understanding’
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Limitations

• Hand-specified lexicon

• High-bias model; few chances to learn from data

• Cognitive demands limit speaker rationality

• Speaker preferences
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1. Meaning from a communicative tension
2. The Rational Speech Acts (RSA) model
3. Learning in the Rational Speech Acts Model
4. Neural RSA
5. Language and action

Will Monroe
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TUNA furniture example

Utterance: “blue fan small”
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TUNA furniture example

colour:green
orientation:left

size:small
type:fan

x-dimension:1
y-dimension:1

colour:green
orientation:left

size:small
type:sofa

x-dimension:1
y-dimension:2

colour:red
orientation:back

size:large
type:fan

x-dimension:1
y-dimension:3

colour:red
orientation:back

size:large
type:sofa

x-dimension:2
y-dimension:1

colour:blue
orientation:left

size:large
type:fan

x-dimension:2
y-dimension:2

colour:blue
orientation:left

size:large
type:sofa

x-dimension:3
y-dimension:1

colour:blue
orientation:left

size:small
type:fan

x-dimension:3
y-dimension:3

Utterance: “blue fan small”
Utterance attributes: [colour:blue]; [size:small]; [type:fan]
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TUNA people example

Utterance: “The bald man with a beard”
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TUNA people example
age:old

hairColour:light
hasBeard:1

hasGlasses:0
hasHair:0
hasShirt:1
hasSuit:0
hasTie:0

type:person

age:young
hairColour:dark

hasBeard:0
hasGlasses:0

hasHair:1
hasShirt:1
hasSuit:0
hasTie:0

type:person

age:young
hairColour:dark

hasBeard:1
hasGlasses:0

hasHair:1
hasShirt:1
hasSuit:0
hasTie:1

type:person

age:young
hairColour:dark

hasBeard:1
hasGlasses:0

hasHair:1
hasShirt:0
hasSuit:1
hasTie:1

type:person

age:young
hairColour:dark

hasBeard:0
hasGlasses:0

hasHair:1
hasShirt:0
hasSuit:1
hasTie:1

type:person

age:young
hairColour:dark

hasBeard:1
hasGlasses:0

hasHair:1
hasShirt:1
hasSuit:0
hasTie:0

type:person

age:young
hairColour:dark

hasBeard:0
hasGlasses:0

hasHair:1
hasShirt:0
hasSuit:1
hasTie:1

type:person

Utterance: “The bald man with a beard”
Utterance attributes: [hasBeard:1]; [hasHair:0]; [type:person]
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Feature representations






colour:blue
orientation:left

size:small
type:fan

x-dimension:3
y-dimension:3

,
[colour:blue]
[size:small]
[type:fan]







Cross-product features

colour:blue ∧ [colour:blue]
colour:blue ∧ [size:small]
colour:blue ∧ [type:fan]

orientation:left ∧ [colour:blue]
orientation:left ∧ [size:small]

...

Generation features

color
type+ color
color+¬size

attribute-count = 3
...

type � orientation � color � size
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Model definition

  

Learning through RSA

⊙
ϕ θ

“beard”

“guy with the beard”

“guy with glasses”

...

S0(m|t ,θ)∝exp [θT ϕ(t ,m)]

L1(t|m ,θ)∝S0(m|t ,θ)

S1(m|t ,θ)∝L1(t|m ,θ)
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Optimization

  

Learning through RSA

“guy with the beard”

⊙
ϕ θ

“beard”

“guy with the beard”

“guy with glasses”

...

∂
∂θ log S1(m|t ,θ)
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Addressing the drawbacks of RSA

Goal Features

Avoid hand-built lexicon Cross-product features
Learn quirks of production Features like color
Learn attribute hierarchies Features like color+¬size
Learn message costs Length features and others

Cognitive and linguistic insights
combined with learning
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Example

Train

[person]
[glasses]

[person]
[beard]

Test
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∅

.08 .25 .03 .00 .10 .11

[person]

.08 .25 .22 .10 .16 .13

[glasses]

.17 .00 .03 .00 .11 .07

[beard]

.08 .25 .03 .04 .08 .17

[person];[glasses]

.17 .00 .22 .01 .18 .08

[person];[beard]

.08 .25 .22 .74 .12 .19

[glasses];[beard]

.17 .00 .03 .00 .10 .11

[all]

.17 .00 .22 .10 .16 .11

RSA Learned S0 Learned S1
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.03 .00 .10 .11
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∅ .08 .25 .03 .00

.10 .11

[person] .08 .25 .22 .10

.16 .13

[glasses] .17 .00 .03 .00

.11 .07

[beard] .08 .25 .03 .04

.08 .17

[person];[glasses] .17 .00 .22 .01

.18 .08

[person];[beard] .08 .25 .22 .74

.12 .19

[glasses];[beard] .17 .00 .03 .00

.10 .11

[all] .17 .00 .22 .10

.16 .11

RSA Learned S0

Learned S1
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∅ .08 .25 .03 .00 .10 .11
[person] .08 .25 .22 .10 .16 .13
[glasses] .17 .00 .03 .00 .11 .07
[beard] .08 .25 .03 .04 .08 .17

[person];[glasses] .17 .00 .22 .01 .18 .08
[person];[beard] .08 .25 .22 .74 .12 .19
[glasses];[beard] .17 .00 .03 .00 .10 .11

[all] .17 .00 .22 .10 .16 .11
RSA Learned S0 Learned S1
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TUNA Results

0.0 0.2 0.4 0.6 0.8 1.0

Mean Dice

furniture

people
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TUNA Results

0.0 0.2 0.4 0.6 0.8 1.0

Mean Dice

furniture

people

RSA s1 0.522

Learned S0 0.812

Learned S1 0.788

RSA s1 0.254

Learned S0 0.73

Learned S1 0.764

*

*
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Error analysis

0 50 100 150 200 250 300 350

Underproductions of attribute

[type:person]

[hasBeard:true]

(Lower is better!)
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Limitations

• Hand-specified lexicon

• High-bias model; few chances to learn from data

• Cognitive demands limit speaker rationality

• Speaker preferences

• Scalability
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1. Meaning from a communicative tension
2. The Rational Speech Acts (RSA) model
3. Learning in the Rational Speech Acts Model
4. Neural RSA
5. Language and action

Robert Hawkins Will Monroe Noah Goodman
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Color reference

Color Utterance

xxxx violet

xxxx blue

xxxx dark green

xxxx the best color in the freakin’ world!!!

Table: Examples from the xkcd color survey

Color papers at this conference, Friday: Monroe et al.
(Session 8A) and Kawakami et al. (Session P8)
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Colors in context

Context Utterance

xxxx xxxx xxxx blue

xxxx xxxx xxxx The darker blue one

xxxx xxxx xxxx dull pink not the
super bright one

xxxx xxxx xxxx Purple

xxxx xxxx xxxx blue

Table: Example from the Colors in Context corpus from the
Stanford Computation & Cognition Lab
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Literal neural speaker S0

c1 c2 cT

h h; 〈s〉 h; x1 h; x2

x1 x2 〈/s〉

LSTM

Fully connected

softmax
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Neural literal listener L0

x1 x2 x3

(μ,Σ) c1 c2 c3

• • •

c3

Embedding

LSTM

Softmax
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Neural pragmatic agents

Neural pragmatic speaker (Andreas & Klein, here!)

S1(msg | c,C;θ) =
L0(c |msg,C;θ)
∑

msg′∈X L0(c |msg′, C;θ)

where X is a sample from S0(msg | c,C;θ) such that
msg∗ ∈ X.

Neural pragmatic listener

L1(c |msg,C;θ) ∝ S1(msg | c,C;θ)

Blended neural pragmatic listener
Weighted combination of L0 and L1.
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Language and action

1. Meaning from a communicative tension
2. The Rational Speech Acts (RSA) model
3. Learning in the Rational Speech Acts Model
4. Neural RSA
5. Language and action

Adam Vogel Dan Jurafsky

42 / 56



A Gricean ideal Implicatures RSA Learned RSA Neural RSA Language and action Prospects

The Cards task

You are on 2DYellow boxes mark cards 
in your line of sight.

Task description: Six 
consecutive cards of 

the same suit

TYPE HERE

The cards you are holding Move with the arrow keys or 
these buttons.
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The Cards task

Gather six consecutive cards of the same suit (decide
which suit together) or determine that this is
impossible. Each of you can hold only three cards at a
time, so you’ll have to coordinate your efforts. You can
talk all you want, but you can make only a limited
number of moves.

What’s going on?
⇓

Which suit should we pursue?
⇓

Which sequence should we pursue?
⇓

Where is card X?
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Task-oriented dialogue corpora

Corpus Task type Domain Task-orient. Docs. Format

Switchboard discussion open very loose 2,400 aud/txt
SCARE search 3d world tight 15 aud/vid/txt
TRAINS routes map tight 120 aud/txt
Map Task routes map tight 128 aud/vid/txt
Columbia Games games maps tight 12 aud/txt
Settlers strategy board tight 40 txt
Cards search 2d grid tight 1,266 txt

Chief selling points for Cards:
• Pretty large
• Controlled enough that similar things happen often
• Very highly structured
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Simplified cards scenario

Both agents must find the ace of spades.
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ListenerBot

• A POMDP agent that learns to navigate its world
and interpret language.

• Driven by its small negative reward for not having
the card and its large positive reward for finding it.

• No sensitivity to the other player.

• Literal listeners: each message msg denotes
P(w |msg) estimated from the Cards corpus.

• Bayes rule to incorporate these as observations.

“it’s on the left side”

⇒ board(left) ⇒
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DialogBot

A strict extension of Listener Bot:

• The set of states is now all combinations of
É both players’ positions
É the card’s region
É the region the other player believes the card to

be in
• The set of actions now includes dialogue actions.
• Same basic reward structure as for Listenerbot,

except now also sensitive to whether the other
player has found the card.

• Speech actions are modeled in terms of how they
affect the agent’s estimation of the belief state of
the other agent.
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Pursuing the ideal of Gricean pragmatics
• The cooperative principle: Make your

contribution as is required, when it is required, by
the conversation in which you are engaged.

• Quality: Contribute only what you know to be true.
Do not say false things. Do not say things for which
you lack evidence.

• Quantity: Make your contribution as informative as
is required. Do not say more than is required.

• Relation (Relevance): Make your contribution
relevant.

• Manner: (i) Avoid obscurity; (ii) avoid ambiguity;
(iii) be brief; (iv) be orderly.

• Politeness: Be polite, so be tactful, respectful,
generous, praising, modest, deferential, and
sympathetic. (Leech)
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Emergent pragmatics

Quality

• Very roughly, “Be truthful”.
• For DialogBot, this emerges from the decision

problem: false information is (typically) more costly.
• DialogBot would lie if he thought it would move

them toward the objective.

Quantity and Relevance

• Favor informative, timely contributions.
• When DialogBot finds the card, it communicates its

location, not because it is hard-coded to do so, but
rather because it will help the other agent.
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Grown-up DialogBots
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Baby DialogBots
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Experimental results

Agents % Success Average Moves

ListenerBot & ListenerBot 84.4% 19.8
ListenerBot & DialogBot 87.2% 17.5
DialogBot & DialogBot 90.6% 16.6

Table: The evaluation for each combination of agents. 500
random initial states per agent combination.
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Scalar implicature
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Scalar implicature
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Figure: Human literal interpretations
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Figure: Human pragmatic interpretations
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Figure: DialogBot interpretations
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Limitations

States

Card location 231
×

Agent location 231
×

Partner location 231
×

Partner’s card beliefs 231
Total ≈3 billion

• Exact solutions are out of the question.
• State-of-the-art approximate POMDP solutions can

solve problems with around 20K states.
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Conclusion and prospects

1. The RSA insight L(S(L)) is a powerful tool for
achieving pragmatic language understanding.

2. RSA can be instantiated as a learned classifier.
3. The intractability of these models traces to the

inherent intractability of pragmatic reasoning.
4. Computational and cognitive considerations should

lead us to effective approximations.

Thanks!
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